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Chapter 1

Statistical Problem

1.1 Introduction

My interest in the field of Statistics was sparked by Hume’s Problem of Induction. Since Hume intro-
duced this problem in 1739, probability theory seems to be the most suitable framework for addressing
it. While the mathematics of probability provides a somewhat (due to Gödel) consistent system for
reasoning, it does not prescribe how to interpret the resulting probabilities. Nevertheless, differences
in interpretations of probability should not lead to divergent methods of statistical inference. I believe
that the interpretation of probability is crucial for uncertainty quantification, but the rest of statistical
inference should be conducted logically, and probability theory remains our best tool for tackling statis-
tical problems. The term ”statistics” is derived from several European languages, including the Latin
”status,” the Italian ”statistia,” the German ”statistik,” and the French ”statistique,” all of which relate
to a political state. Historically, statistics referred to information valuable to the state, such as data on
population sizes (human, animal, products, etc.) and military strength. An instance of an archetypal
statistical problem is where there exists a finite population Ω, and some measurements have been taken
by X : Ω → X . Then for a set A ⊂ X , the fundamental object of interest is the relative frequency ratio
#({ω∈Ω:X(ω)∈A})

#(Ω) . So let the relative frequency function be fX(x) = #({ω∈Ω:X(ω)=x})
#(Ω) . If conducting

a census would be feasible, then there is no problem to be solved. However, in real life, doing so is
typically not possible or plausible. Hence the fundamental problem that statistics is trying to address is
how to infer the true relative frequency function, from observing the measurements for a subset of the
population. Like any other science, a first step is to impose some assumptions in order to be able to
work with the problem. Although one can be skeptic about it, statisticians often assume that the data is
coming from a certain family of relative frequency functions, where are indexed by the model parameter
θ ∈ Θ. Hence, for parameter space Θ, M = {fθ : θ ∈ Θ} is our statistical model. The model can be
largely in error, but imposing assumptions is part of science. The more important thing is the logical
procedure that we are following which should be free of paradoxes and falsifiable. Moreover, there are
issues that arise in statistics due to under-specification of the problem, which for the interest of this text,
will be ignored (See for instance the Borel paradox). There are two base problems in statistics, namely
Estimation and Hypothesis assessment, and naturally an estimation should be supplied with a measure
of an accuracy and so does for the hypothesis assessment.

1.1.1 Falsifiablity, Objectivity and Subjectivity

Much of efforts in statistics seem to be in pursue of reasoning objectively, and certain schools of thoughts
such as frequentism had been developed with that hope. However, I believe that there is no way to avoid
subjectivity in the process of statistical inference, or better say, science in general. When a statistician
chooses a model, he is making a subjective choice, measurements that we take, Newton’s F = ma is also
subjective etc. On the other hand, reaching the objective truth has always been the goal of scientific
investigation. Statistics should be viewed as a way of reasoning where although subjective choices are
made along the way, those choices can be checked with an (assumed) objective information. Hence, in
our view, we assume that the data is generated objectively. Moreover, as mentioned by Popper (1959),
a valid scientific theory must be empirically testable; This is known as the falsifiability principle. Hence,
we believe that besides being logical, ingredients of a statistical inference method must be falsifiable.
This view may not be accepted by Bayesians as they do not want to check priors. Also certain aspects of
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frequentist inference such as using squared loss, is not falsifiable either. Additionally, one can question
whether the data is chosen objectively or not, or is that even possible. As will be discussed shortly, there
is no way to be certain whether something is random or not. However, remembering that assumptions
are a necessary part of science, we assume such a thing in our statistical analysis and require the collected
data to be objective as possible.

1.1.2 Randomness

There has been approaches in history to define and characterize randomness. So far, the most successful
one seems to be Kolmogorov’s definition of randomness. There are several formal treatments of Kol-
mogorov complexity, which the interested reader can refer to Ming Li (2019). In essence, Kolmogorov
complexity is the length of the shortest possible program (in any programming language), that can
generate a sequence of numbers. If the length of the sequence of numbers where greater or equal to
its Kolmogorov complexity, then the sequence is called random. Therefore, in this treatment, proba-
bility does not play a role in randomness. Moreover, it is worth to note that Kolmogorov complexity
is not computable! and more generally, there does not seem to be a way to identify if something is
random or not. All of our statistical checks can only check if the given sequence possess some desirable
properties that a random sequence should have, but the converse does not hold. For instance, consider
Chambernowne’s Sequence.

Example 1.1.1. Suppose Ω = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and assume the sequence: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
1, 0, 1, 1, 1, 2, 1, 3, . . . is generated. Clearly, this sequence is constructed deterministically from counting
natural numbers in their order. However, it can be shown that the limiting relative frequency of any
ω ∈ Ω is 1

10 and the sequence is generated i.i.d from a uniform distribution.

1.1.3 Infinity and Continuity

The basic statistical problem that we introduced had finite sample space, and in real world, I believe
everything will be reduced to the finite case. However, for mathematical convenience, infinite sets can
be used as an approximation to something that is essentially finite. Indeed this simplification might
introduce error in our analysis and certain care is needed. Moreover, there are different views regarding
continuity in statistics. Some argue that continuity is a fundamental truth, but I believe that not only
continuity arises as approximation, but also by taking it as a fundamental object, there are various
paradoxes that can arise. For instance, consider the following famous example that Fisher used to
incorrectly object bayesian statistics.

Example 1.1.2. Uniform Priors
Let Ω be our sample space of students with size N , where N is very large. Suppose further that a measure-

ment have been taken by X : Ω → {0, 1} where for any ω ∈ Ω, X(ω) =

{
1, ω is a Statistics student

0, otherwise

Hence our model for the observed data x, would be M = {θx(1− θ)1−x : θ ∈ ΘN}, where
ΘN = {0, 1

N , . . .
N−1
N , 1}. In bayesian setting which will be discussed, a prior probability distribution

will quantify our uncertainty about the true value of the θ. Let ΠN be the density function of uniform
probability distribution on ΘN . Now since N is very large, ΘN can be approximated by Θ = [0, 1]. Hence
Π( i

N+1 ,
i+1
N+1 ) =

1
N+1 . Now assume that we want to do inference on a 1- 1 transformed parameter space

via Ψ : Θ → Ψ , where Ψ(θ) = θ2. This induces the prior probability on Ψ ,

pΨ(ψ) =

{
1

2
√
ψ
, ψ ∈ [0, 1]

0, otherwise

Some argue that this is a contradiction, since although Θ and Ψ are isomorphic, probability distribution
on Ψ is not uniform. This objection rises with the view of taking continuous models as fundamental
object. However, by considering continuity as an approximation, we know that the true value ψ is in

ΨN = {0, 1
N2 , . . .

(N−1)2

N2 , 1}, and

1

N + 1
= Π(

i

N + 1
,
i+ 1

N + 1
) = ΠΨ((

i

N + 1
)2, (

i+ 1

N + 1
)2) =

∫ ( i+1
N+1 )

2

( i
N+1 )

2

1

2
√
ψ
dψ

Where 1
2
√
ψ

is adjusting for the fact that the transformation is modifying length at different rates. Hence

there is no contradiction if we take the approximation into account.
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For mathematical details of how probability density functions arise via a limit, see Evans (2015),
Appendix. Moreover, an important thing that the above example illustrates is the need for a meaningful
discretization. Since we believe that at the end of the day our inferences are for a finite parameter spaces,
a discretization δ must be supplied by the user for a given application.

1.1.4 Decision Theory

Statistics can be partitioned into two school of thoughts throughout the years. Namely decision-theoric
(American) and evidential (British). Following the falsifiability principle, it is not clear how to check for
ingredients in decision-theoric statistics such as loss function, utilities etc. Hence, this view is omitted in
this text and although very interesting, it does not seem to help with constructing a logical and falsifiable
inference methodology that can be used in scientific applications. Moreover, it worths mentioning that
such treatments of statistics are not free of paradoxes, see for instance Introduction to Decision Theory
by Peterson.

1.2 Probability

Since probability lies at the heart of statistics, it needs to be discussed. However, we skip the history
and mathematical details and rather focus on its various interpretations. In order to do so, we need to
set some foundations.

1.3 Kolmogorov Formalization of Probability

Throughout this text we assume (Ω,A,P) is our probability triple, where Ω is our sample space, A is a
sigma algebra on Ω and P : A → [0, 1] is our probability measure such that P(Ω) = 1 and P is countably
additive. Although, there has been attempts on working with finitely additive probability measure, since
countable additivity implies continuity, its existence is necessary for conditional probability to behave
correctly.

1.4 Conditional Probability

Definition 1. Principle of Conditional Probability For (Ω,A,P) and A,C ∈ A with P(C) > 0, if it is
known that event C has occurred, then P(A) must be replaced by P(A|C)

Concerns has been raised for above principle in the philosophy literature as ”The Problem of Old
Evidence”. However, if the problem is characterized in statistical setting, the mentioned issue is resolved.
It should be noted that we take this as an axiom. In other words, there is no mathematical justification
of why we should do so, but this seems the most plausible way to modify beliefs.
Misapplying the principle of conditional probability, have created significant confusions in statistics
community, such as The Monte Hall Problem, Prisoners Dilemma, etc. The root of this misunderstanding
is the absence of a consistent way of conditioning on data. In order to address this, an Information
Generator function, Υ, must be specified; Υ : Ω → Ξ is a function on the specified sample space Ω, such
that for a given context, the obtained information can be specified by B = Υ−1{ξ0}
By specifying such function, the paradoxes will be resolved. For instance see Evans (2015) Example
2.2.2.

1.5 Subjective Probability

One of the main interpretations of probability is to measure degree of ones belief about an event hap-
pening. This does not have anything to do with objectivity. There are several justifications for this such
as probability via betting, scoring rules, Savage’s axiomatization, Cox’s theorem etc. Although very
interesting and intelligent, usually there is one or two assumptions in these justifications that are very
controversial, such as the 6th axiom in Savage’s axiomatization or 5th in Cox’s. However, we believe
that probabilities measures ones belief regardless of how it is assigned.
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1.6 Relative Frequency Probability

To the contrary of subjective probability camp, there are people who believe that probabilities correspond
to real-world entities. Hence, in their view, an event’s probability is its relative frequency in infinitely
many trials. Additionally, the existence of a random system for this definition seems essential and the
corresponding issues about randomness has discussed before.
To me, this interpretation looks far from reality and at best can be considered as a though experiment.
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Chapter 2

Survey Of Characterizing Statistical
Evidence

In this chapter we will be discussing important approaches that have been made in literature to charac-
terize statistical evidence, and assess their shortcomings.

2.1 Pure Likelihood Inference

Likelihood inferences are solely based on the likelihood function.

Definition 2. Likelihood function
For observed data x and model M = {fθ : θ ∈ Θ}

L(.|x) : Θ → [0,∞)

is the likelihood function.
Where L(θ|x) = kfθ(x) for some positive k.

2.1.1 Full Parameter Estimation

The motivation comes form the discrete case, which we argued is the case in real world, but more
generally, L imposes a preference ordering on Θ. If L(θ1|x) ≤ L(θ2|x), then θ1 is not preferred to θ2.
i.e. θ1 ≼ θ2. Note that in this case the k gets cancelled and so if observing x under fθ1 is less probable
than fθ2 , then θ1 is not preferred to θ2. Naturally, parameter estimation arises from maximizing the
likelihood function.

Definition 3. Maximum Likelihood Estimate (MLE)

θMLE(x) = argsupθL(θ|x)

We assume that MLE is always uniquely exist. However, in absence of not enough data, this is not
always the case. Moreover, there is another principle in pure likelihood approach regarding measuring
the strenght of evidence.

Definition 4. Law of the Likelihood
L(θ1|x)
L(θ2|x) measures the strength of the evidence supporting θ1 over θ2.

As argued in the previous chapter, it is natural to assess the accuracy of our estimation, MLE, with
the ”size” of a set C(x) ⊂ Θ.

Definition 5. Likelihood Reigon
C(x) = {θ : L(θ|x) ≥ c(x)}

For some c : X → [0,∞).

In accordance to the Law of the likelihood, and to avoid arbitrary choices for c(x), we attempt to
measure evidence on a universal scale as follows:
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Definition 6. (1− γ)-likelihood region for θ

Cγ(x) = {θ : L(θ|x)
L(θMLE(x)|x)

≥ c(x)

L(θMLE(x)|x)
= 1− γ}

for some specified γ ∈ [0, 1]

Hence, for a given γ, C(x) contains values in Θ such that the data supports at least 100(1 − γ)%
of the maximum support (MLE). However, this approach still needs to provide a guide for choosing γ.
Royall (1997) does so by arguing based on an urn model that for θ , whenever the relative likelihood

ratio L(θ|x)
L(θMLE |x) ≥ 1

8 then there’s strong evidence in support of θ. Hence, same logic can be applied for

hypothesis testing. Personally, I have not looked into Royall’s urn model argument closely but I believe
there is no sound justification for setting γ. While, besides from Royall’s urn model argument, likelihood
inference seems to be uncontroversial, there are problems associated with whether or not the likelihood
relative ratio is measuring strength of evidence. To illustrate this point, consider the following discrete
example in Evans (2015), to control for the issues that might arise due to infinity.

Example 2.1.1. Let A = {a1, a2, ..., ak} be set of letters, and Θk be the set of all words of length M or
less. Define l : Θk → N to measure the size of a word in Θk, and r : Θk → Θk s.t r(θ) is θ with the last
letter chopped. Now, for this inference problem, let Θk = Xk and suppose x is observed. Let δ > 0 and
define the probability distribution as follows :
If l(θ) < M

fθ(x) =


1
k+1 + δ, x = θ
1
k+1 − δ

k , x = θai for i = 1, ...k

0, o/w

If l(θ) =M

fθ(x) =

{
1, x = θ

0, o/w

By using above, the likelihood ratio is :

L(θ|x)
L(θMLE(x)|x)

=


1, θ = x
1
k+1 − δ

k , θ = r(x)

0, o/w

Notice that for a small value of δ and by choosing k large enough, L(θ|x)
L(θMLE(x)|x) can be made arbitrary

small for when θ = r(x). Hence for any γ < 1, we can construct Cγ(x) = {x}.
Thus, we have a very high accuracy for MLE and on the other hand, for l(θ) > 0, Pθ(θ = r(x)) = k

k+1−δ.
Also, by proper choice of k, we can make Pθ(θ = r(x)) arbitrary close to 1− δ.
As a result, for many observed values x, our MLE estimation has a very high accuracy but we are virtually
certain that the true value is r(x). For more information on another variation of this example, take a
look at Evans(1989).

As the example illustrated, there are concerns with likelihood ratio as this does not seem to measure
the strength of evidence in favor of θ and this raises concerns regarding the calibration in relative
likelihood ratio.

2.1.2 Marginal Parameter Estimation

Consider the usual setup of a statistical problem. Moreover, let Ψ : Θ → Ξ not be a 1-1 function. In
this setting, we are interested in assessing composite hypothesis. i.e. H0 = Ψ−1{ξ} ⊂ Θ. Since the pure
likelihood approach is silent in this setting, profile likelihood has been introduced to resolve the issue.

Definition 7. Profile Likelihood Function

LΨ(ξ|x) = supθ∈Ψ−1{ξ}L(θ|x)
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Hence, this induces a preference ordering on Ξ. Moreover, it can be shown that, under weak con-
ditions, γ-profile likelihood region is the same as Cγ(x). However, the issue with this approach is that
LΨ(.|x) is not a likelihood function in general. So the profile likelihood method needs a justification
which is out of scope of pure likelihood principles. See a simple example in Evans (2015), Example 3.2.2.

Moreover, other forms of likelihood such as integrated likelihood, marginal likelihood and conditional
likelihood has been developed, but they only work in limited contexts and cannot be applied in general.
To conclude, likelihood method suffers various issues and the root of those issues seem to be the effort
to measure the evidence on a universal scale.

2.2 Birnbaum’s Theorem

Birnbaum has considerable contribution in the literature on statistical evidence. A controversial result
obtained by Birnbaum (1962) was that by accepting two commonly accepted frequentist principles,
namely sufficiency and conditionality, one must adhere to the likelihood principle as they are equivalent.
Unfortunately this is largely ignored in today’s statistics courses but it is indeed important, because
this indicates that important tools in frequentist inference such as p-values, confidence regions, repeated
sampling, etc will be left out. In order to see what Birnbaum did (and did not), we need a useful
formalization for characterizing statistical inference.
Define an inference base I = (X ,M = {fθ : θ ∈ Θ}, x), where X is the sample space, M is the model
and x ∈ X is the observed data. Let I be the set of all such inference bases. Then,

Definition 8. Statistical Principle
Whenever R ⊂ I× I is an equivalence relation, it is called a Statistical Principle.

The underlying idea is that if two inference bases are related by some principle P , then they contain
the same statistical evidence regarding inferring the true parameter under that principle.
For the sake of notation, if R is a relation on set D, then the equivalence relation R̄ generated by R is
the smallest equivalence relation containing R. It is worth noting that R̄ might not always happen to be
meaningful in statistical setting and it should be examined.

Consider the following statistical principles.

Definition 9. Likelihood Principle (L)
Let I0 = (X , {f0θ : θ ∈ Θ}, x0) and I1 = (X , {f1θ : θ ∈ Θ}, x1) be inference bases and L ⊂ I × I.
(I0, I1) ∈ L whenever for every θ ∈ Θ, there exists c > 0, f0θ(x0) = cf1θ(x1)

The following lemma is needed for defining the sufficiency principle.

Lemma 1. (Minimal) Sufficient Statistic T
A function T is a minimal sufficient statistic whenever the conditional distribution of x given T (x) is
independent of θ. In other words, T contains all the needed information for inference. T is said to be
minimal, whenever for any other sufficient statistic U , there exists a function h such that T = h ◦ U

Definition 10. Sufficiency Principle (S)
Let T0 be the minimum sufficient statistic for model M0 and T1 be such for M1. Moreover, let M0,T0 and
M1,T1

be the respective marginal models. (I0, I1) ∈ S whenever there exists a 1-1 function, h, between
the sample spaces of the marginal models, and T0(x0) = h(T1(x1)).
Moreover, S ⊂ L

Before defining the last relation, we need to following definition.

Definition 11. Ancillary Statistic
A function h is on X is an ancillary statistic for model M if the distribution of h is independent of
θ ∈ Θ. Hence the value of h(x) is silent about the true value of θ. Moreover, for x ∈ X , the conditional
model given h(x) is M′ = {fθ(.|A(x)) : θ ∈ Θ}.

For a motivation of following relation, see Evans (2015), Example 3.3.1.

Definition 12. Conditionality Relation(C)
(I0, I1) ∈ C whenever sample spaces and observed data of both inference bases are equivalent and there
exists an ancillary statistic for M0, h, such that the conditional model given h(x0) is M1 or the same
holds for (I1, I0).
Moreover, C ⊂ L.
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It must be emphasized that C is not an equivalence relation and hence can’t be a statistical principle.
This is because C is not transitive. As shown in Evans (2013), Birnbaum’s theorem was not correctly
stated. In fact, Birnbaum’s theorem establishes the following result.

Theorem 2. Birnbaum’s Theorem
S ∪ C ⊂ L ⊂ S ∪ C

It shown in Evans (2015) that C = L, hence accepting the relation C does not necessarily lead to
accepting L unless the extra elements, C \ C, make sense. Moreover, it is established in Evans (2015)
that L = S ∪ C. Thus, Birnbaum is not proving what is has been claimed over the years, but rather
it is showing that the L is the smallest equivalence relation that contains S ∪ C. i.e S ∪ C. Hence,
Birnbaum’s theorem does not provide support for the likelihood principle.

2.3 Frequentist Approach: P-values

P-value plays a central role in frequntist approach regarding evidence. As defined by Cox and Hinkley
(1974), Let M = {fθ : θ ∈ Θ} be our model, x the observed data, H0 ⊂ Θ be the null hypothesis, and
T : X → R be our test statistic. Let PH0,T be the marginal distribution of T under H0, which is fixed
for any θ ∈ H0. Then,

Definition 13. P-value

pH0(x) = PH0(T (X) ≥ T (x))

This definition corresponds to the term ”p-value”, as the ”p” stands for probability. In frequntist
perspective, a small value of p-value is considered as evidence against the null hypothesis. A property
that frequentists find necessary for a measure of evidence and it can be shown for p-value is that under
the null, pH0

(x) ∼ Uniform(0, 1).
However, there are several issues regarding p-values that the interested reader can trace the term p-
hacking in the literature. Here, we restrict our attention to some of the importatnt issues with p-values.
First thing to note is that the same issue from pure likelihood theory carries over; Namely, we need to
specify a cut-off , α, where we can decide whether there is evidence against our null hypothesis or not.
Empirically and traditionally α is often set to 0.05, but this really context dependant and the issue for
choosing α is not resolve so far.
Moreover, an important problem with p-value is that it is not sensitive to sample size. To illustrate this
point, consider the following example.

Example 2.3.1. Location Normal
Let M = {fθ : θ ∈ Θ} be our model, where fθ ∼ N(θ, 1) and let T (X) = X̄n. Then T (X) ∼ N(θ, 1

n2 ),
and as argued in chapter 1, we specify a δ as the precision of our measurement. It can be easily seen
that the more data we collect, the more the probability distribution of T (X) will be concentrated around
the null hypothesis. This concentration can be done arbitrarily more as much as putting the probability
mass virtually within δ distance from null. In this case, we have overwhelming evidence in favour of the
null, but p-value, since it is not sensitive to sample size, might still suggest to reject the null.

Any sensible measure of evidence must be able to prescribe if there is evidence in favour of the null
hypothesis. However, since p-value is distributed uniformly, it is not informative to do so. This is yet
another important shortcoming of p-values.

A more concerning issue happens where the date is collected sequentially, since one can argue that
the assessment of evidence should be independent of stopping rule. However, p-value suffers from such
issue. Imagine a scientist with a determined α, collects n samples and obtains a p-value of α+ ϵ, where
ϵ > 0. Thus, with a hope of rejecting the null, he collects m more data. Let A be the event that the
evidence has been found against the null at the first stage, and B be the event that such happened in the
second stage. Then, considering n +m data, the probability of finding evidence against the null in the
first stage or the probability of not finding evidence against the null in the first stage and finding evidence
against the null in the second stage, will be more than α. i.e PH0(A) + PH0(A

c ∩ B) > α Therefore, it
is not possible to find evidence against the null! There are other measures of evidence that suffer same
issues as p-values such as E-values, where it behaves well when the data is collected sequentially. For
more information about E-values see Wang (2023).
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Above example illustrates some serious issue with p-values, and I believe this is sufficient to conclude
that p-values are not a valid measure of evidence. Moreover, it is worth to note that there is no definitive
guide for finding the right test statistic and this ambiguity can result in totally different inferences. An
example of this is illustrated in Evans (2015) Example 3.4.2.

2.4 Frequentist Approach: Confidence Intervals

p-values are deeply related to Confidence intervals. suppose for every θ ∈ Θ, there is a test statistic Tθ
and as argued above, there exists a p-value function pθ(x). Then, a (1− α)-confidence region is defined
as follows:

Definition 14. (1− α)-Confidence Region

C1−α(x) = {θ : pθ(x) > α}

Where Pθ(θ ∈ C1−α) ≥ 1− α

Hence, all the problems associated with p-values carries over to confidence intervals as well. A
somewhat strange procedure in frequntist inference, to the contrary of pure likelihood theory, is that
after determining the C1−α(x), we still need to figure out our estimation of the parameter of interest.
This is odd, because the purpose of confidence regions are to assess the accuracy of the estimation.
Moreover, it is not always possible to construct meaningful confidence regions. For instance,

Example 2.4.1. Assume Θ = [0, 1] and x ∈ R Let M = {fθ : θ ∈ Θ} be our model. Then define
fθ(x) = (1− θ)φ(x) + θφ(x− 1) where φ is the density function of N(0, 1) Then,

C(x) =

{
[0, 1], −1.68148 ≤ x ≤ 2.68148

ϕ, o/w

Clearly, since Θ = [0, 1], this is not informative. Moreover, it worths to note that this is an unbiased
and uniformly most accurate confidence region!

2.5 Bayesian Inference

Remembering the initial discussions about subjectivity and objectivity, Bayesian inference builds on the
idea that the statistician should provide a prior probability measure on the parameter space as well
as specifying model. Then, the rest of the inference carries by using probability theory and using the
axiom of conditional probability as the proper way to change ones belief. Let M = {fθ : θ ∈ Θ} be
our model and let Π be the prior probability measure on Θ; And π denotes its density function w.r.t to
volume measure v on Θ. By choosing a model M and a prior probability measure Π, we characterize the
joint uncertainty for (θ, x). Within this community, there are several approaches such as Quantile-based
inference, Loss-based inference, Empirical bayes, Hierarchical Bayes, Bayesian Frequentism, etc. We will
be focusing on two important topics, namely MAP-based Inference and Bayes factors, as these will bring
up important issues that will help us move towards a more ideal inference method.

2.5.1 MAP-based Inference

MAP-based inference, as the name suggests, aims to maximize a posterior. As a result a preference
ordering is induced on Θ as follows: for θ1, θ2 ∈ Θ, if π(θ1|x) ≤ π(θ2|x) then θ1 ≼ θ2. Hence, it naturally
follows to maximize the posterior for estimation.

Definition 15. MAP Estimate

θMAP (x) = argsupθπ(θ|x)

There are at least two issues associated with this type of inference. The subtle one is that MAP-
based inference is not invariant under 1-1 reparameterizations for continuous parameter space. Let
ψ : Θ → Ξ be 1-1 and smooth. Then, the density of ξ ∈ Ξ is: πψ(ξ|x) = π(ψ−1(ξ)|x)Jψ(ψ−1(ξ)) w.r.t
the volume measure on Ξ. Hence, whenever Jψ(ψ

−1(ξ)) is not a constant function of ξ, it is possible that
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ξMAP (x) ̸= ψ(θMAP (x)). However, this is a subtle issue because of the discussion on infinity in the first
chapter. In a given application, this issue will resolve by discretizing the parameter space meaningfully.

Perhaps the more fundamental issue with MAP-based inferences is the fact that by the induced
preference ordering, we are measuring evidence solely based on the value of the posterior density function.
Remembering the bayesian inference setting, whenever π(θ|x) is big, it might be only because the prior,
π(θ) is large and θ is not the true value. This can be the case in the absence of sufficient amount of data.

2.5.2 Bayes Factor

Perhaps the most commonly used measure of evidence is bayes factors. Here is the definition:

Definition 16. Bayes Factor
Let A ⊂ Θ, 0 < Π(A) < 1, and x be observed. Then the bayes factor in favour of A is

BF (A|x) = Π(A|x)Π(Ac)

Π(Ac|x)Π(A)
=
Odds(A|x)
Odds(A)

Hence, BF (A|x) is measuring the change of belief in terms of odds. In this setting, BF (A|x) > 1
indicates evidence in favor of A, BF (A|x) < 1 indicates evidence against the statement that the true
parameter is in A, and BF (A|x) = 1 is interpreted as there is no evidence against or in favor of A
containing the true parameter. Moreover, it is presumed that the value of bayes factor determines the
strength of the evidence as well; For instance, the larger the BF (A|x), it is claimed that more evidence
is in favor of A. Jefferys came up with a scale where bayes factor greater than 100 is decisive, between
10

3
2 to 100 is very strong, etc.

In order to dive deeper into concerns around bayes factors, the following lemma is useful.

Lemma 3. Let A ⊂ Θ ,0 < Π(A) < 1, and x be observed. Moreover, let T be a minimal sufficent
statistic for M = {fθ : θ ∈ Θ}. Then

BF (A|x) = m(x|A)
m(x|Ac)

=
mT (x|A)
mT (x|Ac)

Where, m(x|A) is the predictive prior density conditioned on A, and mT (x|A) is the prior predictive of
T conditioned on A.

Consider the hypothesis testing setting, where we want to test whether the true θ is in H0 ⊂ Θ. An
apparent concern about bayes factors raises when Π(H0) = 0, as then the bayes factor is undefined, but
such scenarios can happen in real world applications. Jefferys (1961) proposes a solution by specifying
a prior probability for H0, and two conditional prior probability measure for Θ, Π(.|H0) and Π(.|Hc).
Then the prior is taken to be Π′(A) = pΠ(A|H0) + (1 − p)Π(A|Hc

0) for A ⊂ Θ. I believe this is an
instance of taking a solely mathematical approach towards statistics; Although by specifying such new
prior the bayes factor will be defined, doing so is meaningless and seems very arbitrary. A more serious
famous issue is discussed in the following classical example.

Example 2.5.1. The Jefferys-Lindley Paradox
Let Θ = R and M = {fθ : θ ∈ Θ}, where fθ is the densify function for N(θ, 1). Moreover, let
x = (x1, . . . xn) ∈ X be observed i.i.d and T (X) = X̄ be a minimum sufficient statistic. Hence, T (X) ∼
N(θ, 1

n2 ).
Our goal is to assess the hypothesis H0 = {0}. For A ⊂ Θ, p > 0 and a ∈ R, define the prior as
Π′(A) = pδ0(A) + (1 − p)φ(A) , where δ0 is the dirac measure on 0, and φ(A) =

∫
A
f(x) when f(x) is

the density function for N(0, a2). By working out the calculations, mT (x|H0) is the density function for
N(0, 1), and under Hc

0, mT (T (x)|Hc
0) is the density of N(0, 1 + na2) evaluated at T (x). Thus, by the

lemma,

BF (H0|x) =
mT (T (x)|H0)

mT (T (x)|Hc
0)

= e
− (nax̄)2

2(1+na2)

√
1 + na2

Now by fixing
√
nx̄, the bayes factor approaches infinity as a2 → ∞. Hence, by opting for a more diffused

prior, we are inherently inducing more evidence in favor of H0.
On the other hand, by using Frequentist approach and setting

√
nx̄ = 5, the p-value will be 6×10−7. This

gives overwhelming evidence against the null and is surprising, since in general it is perceived that by
using diffuse priors, bayesian and frequentist inferences should lead to the same result. Taking a closer
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look, bayes factors seem to behave well as a measure of evidence. This is because as a2 → ∞ , the bulk
of the prior probability moves away from the null and then x̄

√
n looks more reasonable as a value from a

N(0, 1). The root of the paradox is the fact that the value of bayes factor does not measure the strength
of the evidence, but we leave the paradox open for now and will address it in the next chapter. The other
issue worth to note is that it is not clear how to choose a2 as the hyperparameter. Hence, this deviates
from the logical procedure that a statistical inference methodology should possess.
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Chapter 3

Relative Belief

After assessing some of the currently used methods for measuring and drawing inference based on evi-
dence, this chapter will introduce a methodology to measure statistical evidence, using Relative Belief
Ratio. In doing so, we will try to address some of the previously raised concerns in chapter 2.

3.1 Introduction

Suffering the flaws of inference methods that do not explicitly define what evidence is, we will define
what do we mean by evidence. Firstly, we denote that evidence and belief are different; Probability
measures degree of belief, and evidence is the change in belief. This distinction is very important, as
probability merely captures our belief about a certain event, which is subjective. However, assuming the
data is objective, it is the data that results in the updated belief. Thus, measuring the change in belief
seems to be the right way of defining what statistical evidence is. From now on, consider (P,A,Ω) to be
our probability triple model, and assume there is a valid information generator. Assume further, that
an information is (validly) obtained ω ∈ C, and P(C) > 0. Then,

Definition 17. Principle of Evidence
If P(A|C) > P(A), then there is evidence in favour of event A being true, and if P(A|C) < P(A), then
there is evidence against of A being true. Lastly, whenever P(A|C) = P(A), the data is not indicating
evidence in favor or against A being true.

As argued, the proper way of measuring statistical evidence is through the change in belief and this
can be done in multiple ways. Throughout history, there have been attempts to do so. Carnap (1950)
proposed possibly the simplest way Of measuring evidence by D(C,A) = P(A|C)− P(A). However, this
does not behave properly in the continuous case. Perhaps the second most easy and natural method is
to consider the ratio and this is indeed what we mean by relative belief ratio.

Definition 18. Relative Belief Ratio (simple case)
Provided that the concealed ω is in C ⊂ Ω, relative belief ratio for A ⊂ Ω is

RB(A|C) = P(A|C)
P(C)

There is an axiomatic construction of relative belief which can be found in Evans (2015), but like any
other axiomatization, concerns can be raised. However, it’s really the power that the theory gives us that
indicates its appropriateness. It worths mentioning that other famous proposed measures of evidence are
1-1 increasing functions of relative belief except for bayes factors which will be discussed individually.
There are a number of nice properties that are associated with this simple and intuitive definition, which
we will touch on a few. An important lemma is the following.

Lemma 4. Savage-Dicky Ratio
Assume P(A),P(C) > 0. Then

RB(A|C) = RB(C|A)

Perhaps the most interesting property is the general additivity. If P(A ∩B) > 0, then

RB(A ∪B|C) = RB(A|C)P(A|A ∪B) +RB(B|C)P(B|A ∪B)−RB(A ∩B|C)P(A ∩B|A ∪B)
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This implies that whenever A ∩B = ϕ and P(B) > 0,

RB(A ∪B|C) = RB(A|C)P(A|A ∪B) +RB(B|C)P(B|A ∪B)B)

For A ⊂ B, at first glance, it might not look plausible that RB(A|C) > RB(B|C) be possible. However,
the above propery indicates that the evidence that A is true is contributing to the evidence that B is
true, by the factor of the conditional probability P(A|B). Consider the following clarifying example.

Example 3.1.1. Evidence of a crime
Suppose that a murder is committed in Toronto and it is known that the murderer is from toronto. Let
m be the population of Toronto. Suppose that it has been told with certainty that the murderer comes
from neighbourhood α; Let C denote this evidence. Also, there are m1 < m people of that neighbourhood
in Toronto and assume there are n university students in the town, which n1 < n of them are of
neighbourhood α. Let B be the event that a university of student commited the crime, and A denote the
event that a university student of neighbourhood α has committed the crime. Now consider the following

relative belief ratios. RB(A|C) = P(A|C)
P(A) = m

m1
and RB(B|C) = P(B|C)

P(A) = n1m
m1n

Certainly, RB(A|C) > 1

and so there is evidence in favor of the event that a university student committed the crime. On the
other hand, by proper choice of n1

n , RB(B|C) can be made less than 1. Hence, there is evidence in favor
of the event that a university student of neighbourhood α has committed the crime, but there is evidence
against the statement that a university student committed the crime. This is due to the ratio of students
of neighbourhood α. i.e. n1

n . This seems fair, since when a small fraction of university students are from
neighbourhood α, it is not fair to claim that the evidence suggests that a university student has committed
the crime.

There are other nice and simple properties about relative belief which can come almost for free, due
to the definition of relative belief, but we skip here for the interest of this text.

In order to expand the usage of relative belief in the case where probability of an event might be
zero, for instance due to being of lower dimension, we define the generalized relative belief which can be
employed in the continuous case as well.

Definition 19. Relative Belief (Generalized)
Let (P,A,Ω) be our probability triple and let f be the corresponding density function w.r.t volume measure
v on Ω. Suppose that ψ : Ω → Ξ is smooth, where ψ(ω) = (ψ1(ω), ψ2(ω)). Moreover, let fψ be its density
function w.r.t the volume measure on Ξ. For ψ(ω) = (ξ1, ξ2),

RBψ1(ξ1|ξ2) = lim
δ,ϵ→0

RB(Nψ1,δ(ξ1)|Nψ2,ϵ(ξ2))

Also, under regularity conditions,

RBψ1(ξ1|ξ2) =
fψ(ξ1|ξ2)
fψ1(ξ1)

Where, fψ1
is the marginal density of ψ1 and fψ is the conditional density of ξ1, given ξ2. Moreover,

Nψ1,δ(ξ1), Nψ2,ϵ(ξ2) are ”nice” neighbourhoods. (for details on the convergence and regularity conditions,
see Evans (2015) Appendix)

This corresponds to our view that continuity arises as a tool to approximate something that is
essentially finite. In general, when fψ1(ξ1) > 0, the second formulation of relative belief can be employed,
but it is essential to remember that ultimately the definition arises as a limit. The following utilizes
relative belief ratio in bayesian context.

Definition 20. Bayesian Relative Belief Ratio
Let Ω = Θ × X and f(θ, x) = π(θ)fθ(x) be the density function. Let Ψ : Θ → Ψ , Υ : Ω → Θ and
Υ : Ω → X . Suppose further that (ψ, x) = (Υ1(θ, x),Υ2(θ, x)) where Υ1 doesn’t depend on x and Υ2 is
just a projection on x. Then, when πΨ(ψ) > 0,

RBΨ(ψ|x) =
πΨ(ψ|x)
πΨ(ψ)

Where, πΨ(.|x) is the posterior density and πΨ is the prior density.

As argued in previous chapters, a desirable property of a measure of evidence it to be invariant under
1-1 reparameterizations, and indeed relative belief commits to that property.
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Theorem 5. Invariance of Relative Belief Assume Υ : Ψ → Λ is a smooth 1-1 transformation such that
Υ(ψ) = λ, then

RBΨ(ψ|x) = RBΥ(λ|x)

Number of properties that stated (or skipped) earlier, can also get generalized. Here’s the gen-
eral version of the additivity property mentioned earlier. Assuming the setting in above definition,
RBΨ(ψ|x) = EΠ(.|ψ)(RB(θ|x)) and EΠΨ

(RBΨ(ψ|x)) = EΠΨ(.|x)
( 1
RBΨ(ψ|x) ) = 1 where Π(.|ψ) is the con-

ditional prior given ψ, Π is the prior and Π(.|x) is the posterior. So, if ψ is our parameter of interest,
then the evidence for ψ is the average evidence for parameter space w.r.t the conditional prior given ψ,
and the average evidence for parameter space w.r.t the prior is not informative or neutral.
Another very natural and desired property is the following. Suppose Ψ = {ψ1, ψ2}. Then whenever
RB(ψ1|x) < 1 it implies that RB(ψ2|x) > 1 and the converse.

3.2 Strength of the Evidence

So far the methods that we surveyed in the previous chapter were based on the idea that the evidence
can be measured on a universal scale. This does not seem to be correct and the subsequent flaws
were examined in chapter 2. So in this context dependant approach, the strength of the evidence will
be determined in comparison to other possible parameters in the parameter space. Perhaps the most
informative and natural ingredient in this setting is the posterior distribution. Consider a toy example.

Example 3.2.1. Suppose Ψ = {ψ1, ψ2}. When RB(ψ1|x) > 1 and ΠΨ(ψ1|x) is small, then there is
evidence in favor of ψ1 being the true parameter but our belief is weak. On the other hand, whenever
RB(ψ1|x) > 1 and ΠΨ(ψ1|x) is small, i.e ΠΨ(ψ2|x) is large, then, using the above proposition, we strongly
believe that there is evidence against ψ1 being the true parameter.

The above example outlines the motivation behind how we use the information in the posterior for
calibration. Generalizing the toy example for the case where #(Ψ) > 2 and for the continuous case, the
following is used to measure the strength of the evidence.

Definition 21. Strength of the evidence for RB(ψ0|x)
When RB(ψ0|x) < 1

ΠΨ(RB(ψ|x) ≤ RB(ψ0|x))

When RB(ψ0|x) > 1
ΠΨ(RB(ψ|x) ≥ RB(ψ0|x))

There arguable many ways to measure the strength of the evidence. On can also use a small neigh-
bourhood around ψ0 in the posterior to determine the strength of the evidence in favor / against ψ0. The
above definition is a slightly modified version of the one presented in Evans (2015). I believe the above
generalizes the toy example more naturally and when RB(ψ0|x) > 1, we are measuring our belief that
the true parameter has evidence more than ψ0 . While I do not have a formal justification to convince
the reader that this might be a better measure for strength of the evidence, I do find this definition more
plausible and future empirical experiments might shed more light.

In the big picture, separating measurement of evidence from measuring its strength seems vital and
natural. In the context of parameter estimation, we need to supply our estimation with an accuracy,
and so this must get generalized for hypothesis testing as well.

Hence, by such separation we proposed a method for hypothesis testing. Moreover, the twin problem
is parameter estimation which can be addressed since relative belief imposes a preference ordering on the
parameters as follows: ψ1 is not strictly preferred to ψ2, ψ1 ⋞ ψ2, whenever RBΨ(ψ1|x) ≤ RBΨ(ψ2|x).
Like any other preference ordering, objections might be raised. However, by keeping in mind that our
parameters correspond to some physical quantity, the relative belief preference ordering sounds plausible.
Hence, by above total ordering, we use the Maximum Relative Belief Estimator (MRBE) as our estimate:

ψMRBE(x) = argsupψRBΨ(ψ|x)

Moreover, estimation can play a role in hypothesis assessment and resolve one of the main issues with
p-values that mentioned in previous chapter. Let H0 = Ψ−1{ψ0} be the null hypothesis and suppose
that there is evidence against the null because there is large amount of data and an unmeaningful (in
the context of a specific application) deviation from the null has been detected. A sensible method to
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settle this issue is to consider |ψ0 − ψMRBE | < δ, where δ is supplied by the user and is a meaningful
difference for a given application, and see whether the difference is meaningful.

As argued before, an estimation should be supplied with a measure of accuracy. In parallel with
other inference methods,

Definition 22. γ-relative belief region for ψ is given by

CΨ,γ(x) = {ψ : QΨ(RBΨ(ψ|x) ≥ 1− γ)}

Where QΨ is the posterior CDF.

Hence the ”size” of the γ-relative belief region will determine the accuracy of our estimate and the
notion of ”size” needs to be meaningful for the given context. Moreover, for a desired q > 0, the following
is

Definition 23. q-Plausible region

plΨ,q(x) = {ψ : RBΨ(ψ|x) > q}

is the q-plausible region, and
ΠΨ(plΨ,q(x))

is the plausibility of plΨ,q(x).

Moreover, similar to bayes factor, the following formulation of relative belief ratio is very important.

Theorem 6. General Savage-Dicky Ratio (Dickey 1971)

RBΨ(ψ|x) =
m(x|ψ)
m(x)

=
mT (T (x)|ψ)
mT (T (x))

where m(.) is the prior predictive density, mT (.|ψ) is the conditional prior predictive given ψ, and T is
a minimal sufficient statistic for the model.

Relative belief regions and strength of the evidence has a number of properties which is common for
bayesian inference as well which can be found in Evans (2015) p.122.

bias and sample size 4.7.2
As seen in the Jefferys-lindesly paradox, the choice of prior is affecting the inference. In particular,

diffuse priors might be introducing bias in favor of a particular hypothesis. Yet another benefit of defining
statistical evidence is the ability to measure such bias a priori. The below characterization of bias is
related to the idea of severe test (Mayo and Spanos, 2006).

Definition 24. Bias
Bias against H0 = Ψ−1{ψ0} is given by

MT (
mT (t|ψ0)

mT (t)
≤ 1|ψ0)

And bias in favor of H0 is

MT (
mT (t|ψ0)

mT (t)
≤ 1|ψ′)

for any ψ′ ̸= ψ

The interpretation is as follow. When H0 is true, MT (
mT (t|ψ0)
mT (t) ≤ 1|ψ0) being large indicates that our

belief for finding evidence against the null, a priori, is large. Or in other words, there is a priori small

probability of finding evidence in favor of H0. Whenever MT (
mT (t|ψ0)
mT (t) ≤ 1|ψ′) is small, and for values

ψ′ with a meaningful difference from ψ0, it indicates that the prior is biasing the evidence in favor of ψ0.
The following is instructive as it shows how measuring bias is necessary, but before that an interesting
lemma is required where it demonstrates the relationship between bayes factor and relative belief ratio.

Lemma 7. For A ⊂ Θ = Ψ , p > 0 and H0 = {θ0}, define the prior as Π′(A) = pδH0
(A) + (1− p)Π(A)

and let Ψ : Θ → Ψ be the identity map, where δH0
is the dirac measure on θ0 and Π(θ0) = 0. Then,

BF (H0|x) =
π(θ0|x)
π(θ0)

= RB(θ0|x)
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Hence relative belief ratio and bayes factor agree on scenarios where we are testing for simple hy-
pothesis, but it is important to note that relative belief did not adhere to an arbitrary choice of prior,
but rather a logical development.

Example 3.2.2. Jefferys-lindesly paradox revisted
Let Θ = R and M = {fθ : θ ∈ Θ}, where fθ is the densify function for N(θ, 1). Moreover, let
x = (x1, . . . xn) ∈ X be observed i.i.d and T (X) = X̄ be a minimum sufficient statistic. Hence, T (X) ∼
N(θ, 1

n2 ) Our goal is to assess the hypothesis H0 = {0}. In relative belief setting, by the above lemma,

RB(0|x) = e
− (nax̄)2

2(1+na2)

√
1 + na2

This is same as the bayes factor, but consider the behavior of the strength of the evidence for a very
diffuse prior as measured in Evans (2015)

lim
a→∞

Π(RB(θ|x) ≤ RB(0|x)|x) = 2(1− Φ(|x̄
√
n|))

So p-value is really measuring the strength of the evidence in this scenario. Consider a specific numerical
example where n = 50, a2 = 400 and x̄

√
n = 1.96. Then RB(H0|x) = BF (H0|x) = 20.72 and by Jefferys’

scale, this is considered as strong evidence in favor of the null. However, the strength of the evidence is
0.05 and so this evidence is very weak. Hence, it is concluded that large values of relative belief ratios,
or bayes factors by the lemma, does not indicate strong evidence in favor of the null. Moreover, as prior
becomes more and more diffuse, i.e. a → ∞, the evidence in favor of the null becomes arbitrarily large.
The problem of choosing the right a2 remains to be solved, and this is discussed in Evans (2015), chapter
5. Now consider the bias calculation as follows,

MT (RB(0|x) ≤ 1|θ) = 1− Φ(cn − θ
√
n) + Φ(−cn − θ

√
n)

Where cn =
√
max(0, (1 + 1

(1+na2) log(1 + na2)))

Therefore, as a→ ∞, the bias converges to 0 for any θ. So when θ = 0, this is desirable and otherwise,
we are introducing bias in favor of the null.
Our estimation using relative belief preference ordering is ψMRBE(x) = 20.72; Assume that 20.72 is

meaningfully different from H0 = {0} for an application. Then MT (
mT (t|ψ0)
mT (t) ≤ 1|ψMRBE(x)) = 0.12. So

we can suspect that, at least for ψ′ = ψMBRE(x), obtaining weak evidence is due to the bias in the prior.
Hence there is no a priori bias against H0, but there is some in favor of it.

Such definition for bias has a very sensible and desired property,

Theorem 8. Convergence of bias measure

lim
n→∞

MTn
(
mTn

(t|ψ0)

mTn(t)
≤ 1|ψ0) = 0

lim
n→∞

MTn
(
mTn

(t|ψ0)

mTn
(t)

≤ 1|ψ′) = 1

Where ψ′ ̸= ψ

Hence, in scenarios where sample size can be controlled, one can control bias and this can resolve the
above paradox. However, this does not mean that bias calculation should be part of prior selection phase.
In fact, priors should be elicited and then, for selected prior, calculations of bias should be performed
to detect any possible issues. There are numerous optimality properties that relative belief posses which
the reader is referred to Evans (2015). However, an important distinction is that all those properties are
proved for the finite case, as we believe that the correct behavior of an inference method in the finite
case is sufficient, as argued in the first chapter.
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